

EF Lunch & Learn 2020 Cristina Ramos Jaime

Curriculum / Course Design

What **knowledge** do I want my students to be able to **apply** when they have completed my course?

Curriculum / Course Design

What knowledge do I want my students to be able to apply when they have completed my course?

- A Course structure well-organized and coherent > Constructive Alignment
- B Acquisition of relevant knowledge and skills to solve real-world problems > CLOs
- C New knowledge > What the student DOES before, during, and after class > Active Learning
- D All students can achieve a deep level of learning > Create new long-term knowledge

Students have...

- **E** ...Different **interests** > Get to know them! > Design **engaging** lectures, activities and assessments
- F ... Different ways to assimilate new concepts > Communicate using multiple means of representation
- G ...Different learning rhythms > Ensure and check that everyone can comfortably follow the class
- H ...Different strengths and abilities > Allow them to express their ideas using multiple formats
- 1 ... The ability to take responsibility of their own learning > Encourage independency

1_Problem statement

- Provide knowledge on Parametric Design
 - > Adaptable/Flexible 3D models (Grasshopper)
 - > Project documentation (Rhinoceros)

Type 3.

Typ

- Introduction to Digital Fabrication
 - > Connection between design and manufacture
 - > Rationalization of complex geometries
 - > Fabrication of buildable parts

2_Methodology

- Prior to class > Research exercise > Getting ready for the upcoming session
- In the Lecture > Key theoretical concepts + Short practical exercises
- In the Tutorial > Scripting together! > Work-along exercises in your own laptop
- In the Studio > Explore the tool! > Develop your own parametric designs
- After class > Hands on! > Translate your digital work into a physical prototype

Course Structure > Lectures, activities and assessments strongly linked

Assessments & Feedback > Formative weekly tasks (Script+Poster+Prototype) > Progressive learning

- Doesn't include any activity for reflection, analysis or evaluation > New task
 - > Short reflective statement
 - > Improvements based on results
- Optimize Face-to-face consultation time
 > Blended delivery using a flipped class format
- Short video-tutorials work better
- Digital Fabrication Lab is a busy space
 Reduce number prototypes > Use renders

1_Problem statement

- Real-world projects > ARUP Engineering > Office transformable pod
- Knowledge in Digital Fabrication (advanced level) > CNC mills; Novel material systems; Inflatables; Responsive installations
- Prototypes at different scales
- Structural design and Topology optimization
- Live-physics simulation

2_Methodology

- Research and Design of Kinetic Systems
- Structural Analysis and Topology Optimization
- Material Exploration and Prototyping at small and medium scales
- Fabrication management > Times and resources
- Digital Model for Fabrication
- Mock-up at 1:1 scale

1_Problem statement

- Design Thinking > Iterative methodology >
 Users' needs > Context, culture and resources
- Solve real-world challenges in the field of Humanitarian Architecture
- Analysis of environmental conditions > Efficiency of architectural solutions
- Optimization > Energy resources and Spatial performance
- Flexible designs replicable in similar contexts

Computational Design Thinking

Adaptation of the process developed by the Institute of Design at Stanford

2_Methodology

- Reflect + Research > Humanitarian Global
 Challenge + NGOs + Active Projects
- **Interview** NGOs > Defining the brief
- Ideation workshops > Quick sketches: Radical ideas to meet users' needs > Reflect
- Present your ideas to the NGO > Gain feedback
 Reflect > Final group solution
- Break the project into small Computational Design Challenges > Develop your script
- Optimize your solution > Efficiency

Medical Care for Pregnant Women in Sierra Leone

Early Childhood Development in Cambodia

3_Results (work in progress)

3_Results (work in progress)

